
Target the Player: It’s Fun
Being Squished

Our third game will be an action game that challenges players to make quick decisions
under pressure—and if they’re not fast enough then they’ll get squished! We’ll introduce some
new techniques for putting character animation into the game, and show how a controller
object can be used to help to manage the game.

Designing the Game: Lazarus
As usual we’ll need a description of our game. We’ve named it Lazarus, after the biblical char-
acter who was resurrected from the dead, because the game once had to be recovered from an
old floppy disk that had become corrupted! Always remember to make backups of your data!

Lazarus has been abducted by the Blob Mob, who are intent on bringing this harmless crea-
ture to a sticky end. They’ve imprisoned him at the Blobfather’s (sorry) factory, where they are
trying to squish him under a pile of heavy boxes. However, they’ve not accounted for Lazarus’s
quick thinking, as the boxes can be used to build a stairway up to the power button that halts
the machinery. Do you have the reactions needed to help Lazarus build a way up, or will the evil
mob claim one more innocent victim?

Each level traps Lazarus in a pit of boxes stacked up on either side of the screen to contain
him within the level. The arrow keys will move Lazarus left and right, and he will automatically
jump onto boxes that are in his way. However, he can only jump the height of a single box, and
stacks two or more boxes high will block his path. New boxes will periodically appear directly
above Lazarus’s current position and fall vertically down from the top of the screen until they
come to rest. This means that the player will be able to use Lazarus’s position to control where
boxes fall and build a stairway up to the power button.

There will be four different types of boxes, increasing in weight and strength: cardboard,
wood, metal, and stone. Falling boxes will come to rest on boxes that are stronger than them, but
will crush boxes that are lighter. The type of each box is chosen at random, but the next box will
be shown in the bottom-left corner of the window just before it appears. There will be a number
of increasingly difficult levels, with higher stairways to build, and boxes that fall faster. When
Lazarus gets squished, the level will restart to give the player another try. See Figure 4-1 for an
example of how a level will look.

65

C H A P T E R 4

Figure 4-1. This shows how a typical level might look in the Lazarus game.

This may sound rather simple, but—as you’ll see—it actually makes for a very challenging
game! All the resources can be found in the Resources/Chapter04 folder on the CD.

An Animated Character
Our first task will be to create the Lazarus character. We’ll give him comical animations for
when he’s moving, jumping, and being squished to add to the appeal of the game. This will
require a number of different sprites and several different Lazarus objects as well. Like the dif-
ferent behaviors of the rocket in Galactic Mail, using several objects helps us to separate the
different animations of Lazarus in a simple way.

The animations for Lazarus have been designed around the size of the boxes in the game.
All the boxes are exactly 40✕40 pixels in size, so the animations that show Lazarus jumping
from one box to the next need to be as tall and wide as two boxes (80✕80 pixels). This means
we’ll be working with sprites of different sizes, and have to think carefully about where to
place the origin of each sprite so that they match up correctly. Remember that Game Maker
acts as if it is holding each sprite by its origin as it moves around the screen; so all the origins
need to be at the same position relative to Lazarus—regardless of the size of the sprite. This
should begin to make sense as you complete the steps that follow.

■Tip Setting the Smooth Edges property in the Sprite Properties form can often make sprites appear less
pixilated (blocky) in the game.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED66

Creating the Lazarus sprite resources for the game:

1. Create a new sprite called spr_laz_stand using Lazarus_stand.gif from the Resources/
Chapter04 folder on the CD. This sprite is 40✕40 pixels and shows Lazarus in his “normal”
position. Remember that the origin for sprites defaults to the top-left corner (X and Y
both set to 0). We’ll leave this where it is and make sure that the origins of all the other
sprites match up with this position. Click the OK button to close the form.

2. Create another sprite called spr_laz_right using Lazarus_right.gif. This sprite is
80✕80 pixels and shows Lazarus jumping 40 pixels to the right (use the blue arrows to
preview the animation). As usual, the origin has defaulted to the top-left corner of the
sprite, but the top-left corner is further above Lazarus’s head than in the last sprite. To
match up with the previous sprite, we need to move the origin down by 40 pixels—so
set the Y value to 40. The properties form should now look like Figure 4-2.

Figure 4-2. The origin for this sprite has been moved to halfway down the left-hand side.

3. Create a spr_laz_jump_right sprite in exactly the same way using
Lazarus_jump_right.gif (with an X value of 0 and a Y value of 40).

4. Create a spr_laz_left sprite using Lazarus_left.gif. This sprite is also 80✕80 pixels
and shows Lazarus jumping 40 pixels to the left, but this time Lazarus starts on the
bottom-right side of the sprite. This means we need to move the origin 40 pixels down
and 40 pixels right to place it at the same relative position as before. Set both the X and
Y values to 40 and close the form.

5. Create a spr_laz_jump_left sprite in exactly the same way using
Lazarus_jump_left.gif (with an X value of 40 and a Y value of 40).

6. Create two more sprites called spr_laz_afraid and spr_laz_squished using
Lazarus_afraid.gif and Lazarus_squished.gif. These are 40✕40 pixels so there’s
no need to change the origin.

These are all the sprites we need for Lazarus, so our next step is to make some objects for
him. The main object will be the “normal” standing Lazarus. This is the most important one,
as it will react to the player’s keyboard input. The others are only there to play the different

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 67

animations, after which they turn themselves back into the standing Lazarus. They will also
move Lazarus to a new position that corresponds to the final frame of the animation.

We have a bit of a chicken-and-egg situation here, as we did with the two types of rockets
in Galactic Mail. The “normal object” will need actions to turn it into “animating objects”
(which don’t exist yet) and the “animating objects” will need actions to turn them into “normal
objects” (which also don’t exist yet). So which objects do we create first? Well, the answer is
that we create the “normal object” but come back to creating its events and actions after we
have created the “animating objects”—crafty, eh?

Creating Lazarus object resources for the game:

1. Create a new object called obj_laz_stand and give it the standing Lazarus sprite.

2. Press OK to close the properties form (we will come back to it later).

3. Create a new object called obj_laz_right and give it the sprite that hops one box hori-
zontally to the right (spr_laz_right).

4. Add an Other, Animation End event. Remember that this event happens when a sprite
reaches the last subimage in its animation.

5. Include the Jump to Position action in this event (move tab). Set X to 40 and Y to 0,
and make sure that the Relative option is enabled. As the boxes are all 40✕40 pixels,
this will move Lazarus exactly one box to the right at the end of the animation.

6. Also include the Change Instance action (main1 tab) below this and select
obj_laz_stand as the object to change back into.

7. Click OK to close the object properties form.

8. Create another object called obj_laz_left and give it the sprite that hops one box hori-
zontally to the left (spr_laz_left). Repeat the same process as before (steps 4–7), but
set X to -40 for the Jump to Position action.

9. Create another object called obj_laz_jump_right and give it the sprite that hops up
one box diagonally to the right (spr_laz_jump_right). Repeat the process, setting X to
40 and Y to -40.

10. Add a final object called obj_laz_jump_left and give it the sprite that hops up one box
diagonally to the left (spr_laz_jump_left). This time, set X to -40 and Y to -40.

We may as well get the squished Lazarus object out of the way now too—even though
we won’t need it for a while. Once its gruesome animation finishes, this object will display a
message to tell the player that they’ve been squished. This isn’t because we think they are too
stupid to notice, but it provides a useful pause before starting the level again! We’re not going
to add lives or high scores in this game, so we’ll simply restart the level to give the player
another try.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED68

Creating the squished Lazarus object resource:

1. Create an object called obj_laz_squished and give it the squished Lazarus sprite.

2. Add an Other, Animation End event and include the Display Message action (main2
tab) in it.

3. Type something like “YOU’RE HISTORY!#Better luck next time” into the message
properties. Note that putting the # symbol in the middle of the message will start a
new line from that point.

4. Finally, include the Restart Room action (main1 tab) after the message action and
press OK to close the object properties form.

Okay, so now we have these animation objects in place, we can continue making the main
standing Lazarus object we started on the previous page. One of its main jobs is to change into
the appropriate animating object when the player presses a key. The appropriate object
depends on whether Lazarus is standing next to any boxes. We’ll use a conditional collision
action to help Game Maker work this out for us.

Adding a right key event for the standing Lazarus object:

1. Reopen the properties form for the obj_laz_stand object by double-clicking it in the
resource list.

2. We’ll start by creating actions to handle moving to the right. Add a Key Press, <Right>
event and include the Check Collision action in it (control tab).

3. This action allows us to check that there would be a collision if we moved this instance
to a particular position on the screen. We need to make sure that Lazarus is on solid
ground before allowing him to move, as he shouldn’t be able to jump when he is stand-
ing on thin air! To check that this is the case, we set X to 0 and Y to 8 (slightly below his
current position), and enable the Relative option.

■Note Conditional collision actions have an Objects option, which allows us to choose between checking
for collisions with all objects or only ones marked as solid. We’re leaving this set to only solid, so we need to
remember to set the Solid property later when we create the box objects.

4. All of the remaining actions in this event depend on the previous condition (they only
need to be called if it is true). Consequently, we’ll need to include them all between
Start Block and End Block actions. Include the Start Block action now.

5. Now include the Check Empty conditional action. This conditional action is the
opposite of the last one: it checks that there wouldn’t be a collision if we moved to a
particular position on the screen. So to check that the space to the right of Lazarus is
free, set X to 40 (the width of a box), set Y to 0, and enable the Relative option.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 69

6. Include the Change Instance action (main1 tab) and select the obj_laz_right object.
Select yes to Perform Events. This means that the Create event of the object we’re
turning into will get called (which is important later when we add sound effects).

■Note The Perform Events option controls whether the Destroy event of the current object and the Create
event of the new object should be called. This isn’t usually necessary so it does not call them by default.

7. Next include the Else action from the control tab (more about this in a moment).

8. Include another Check Empty conditional action directly after this. This should verify
that there are no boxes diagonally, up, and to the right of Lazarus. Set X to 40 and Y to
-40, and enable the Relative option.

9. Next include the Change Instance action and select the obj_laz_jump_right object.
Select yes to Perform Events.

10. Finally, include an End Block action to conclude the actions that should be performed
if Lazarus is on solid ground. The list of actions now should look like Figure 4-3.

Figure 4-3. Here are the actions for moving or jumping to the right.

This is the first time we’ve used the Else action, but it is often used alongside conditional
actions in this way. On its own, a conditional action only allows you to specify actions that
should be performed if a condition is true. However, in combination with Else, you can specify
different actions to be performed if that same condition is not true. This has many uses, but in
this situation it allows us to ask sequences of questions like this:

Is there solid ground beneath Lazarus’s feet? Yes. Well, is there a free space to the right of

Lazarus? No—there’s a box in the way. Okay, well, is there a free space on top of that box

then? Yes—let’s jump on top of it.

This is just one possible outcome, but our actions provide outcomes for four different sit-
uations: not moving when falling through the air; moving horizontally to the right when no
boxes are in the way; jumping diagonally to the right when a single box is in the way; and
doing nothing at all when more then one box is in the way. You can think of this action list as
reading something like this:

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED70

If the position below has something solid in it, then read the next sentence. If the

position to the right is collision free, then change into object obj_laz_right; else, if the

position diagonally right is collision free, then change into object obj_laz_jump_right.

Before continuing, go through the actions step by step in your head and try to work out
how you end up with each of these different outcomes (move right, move diagonally right, and
no movement). When you’re happy that this makes sense, we’ll move on and do the same
thing for the left arrow key.

■Note Like other conditional actions, the Else action can be used with or without blocks. If blocks are not
used, then the Else only affects the action that immediately follows it.

Adding a left key press event to the standing Lazarus object:

1. Add a Key Press, <Left> event and include the Check Collision action. Set X to 0 and Y
to 8, and enable the Relative option (this checks below).

2. Include a Start Block action.

3. Include the Check Empty conditional action (control tab) with X set to -40, Y set to 0,
and the Relative option enabled (this checks left).

4. Next, include a Change Instance action (main1 tab) and select obj_laz_left. Choose
yes to Perform Events.

5. Now include Else action from the control tab.

6. Include a Check Empty action with X set to -40, Y set to -40, and Relative enabled (this
checks diagonally left).

7. Include a Change Instance action and select the obj_laz_jump_left object. Choose yes
to Perform Events.

8. Finally, include an End Block action to finish the block of actions.

Although our keyboard events stop Lazarus from jumping in mid-air, there aren’t yet any
events to make him fall down to the ground when he is. We’ll get Game Maker to test for this in
a Step event so that it is continually checking to see if he should be falling. However, we need
to think carefully about how far he should fall in each step. The amount of movement in each
step will determine how fast he falls, but it will make our job much simpler if we also choose a
number that divides exactly into 40 (the height of the boxes). Can you think why?

Let’s imagine that we chose a number that doesn’t divide into 40, like 12. Lazarus would
have fallen 12 pixels after one step, 24 pixels after two steps, 36 pixels after three steps, and
48 pixels after four. At no stage has Lazarus fallen the exact 40 pixels needed to fall the height
of one box; he is either 4 pixels too high (at 36 pixels) or 8 pixels too low (at 48 pixels). This
means he would either end up floating above boxes, or jammed someway into them! Using
any number that divides into 40 will avoid this problem (1, 2, 4, 5, 8, 10, 20, or 40), so we’ve
chosen a value of 8 because it produces a sensible-looking falling speed.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 71

Adding a step event to the standing Lazarus object to make it fall:

1. Add the Step, Step event to the standing Lazarus object. We are using the “standard”
Step event as we don’t really care exactly when Lazarus falls, provided he does.

2. Include a Check Empty action in the Step event, setting X to 0 and Y to 8, and enabling
the Relative option. This action checks for empty space just below Lazarus.

3. Include a Jump to Position action directly after it so that it will only be performed if
the Check Empty condition is true. We need to give it the same relative settings as
before, so that it moves into the empty space. Set X to 0 and Y to 8, and enable the
Relative option.

A Test Environment
We’ve gone through quite a lot of steps so far without being able to test our work, so before
going any further let’s quickly create a test level for Lazarus to move around in. There are no
falling boxes yet, so we’ll have to create some random stacks of our own to check if the move-
ment is working correctly. We’ll create just one box type to do this: the boxes that make up the
walls of the pit.

Creating the wall object resource for the game:

1. Create a new sprite called spr_wall using Wall.gif. Disable the Transparent option as
the walls for this level need to look completely solid.

2. Create a new object called obj_wall and give it the wall sprite. Enable the Solid option
so that the checks in the standing Lazarus object can detect the wall.

3. Create a new room called room_test and provide a caption in the settings tab.

4. Look in the toolbar at the top of the Room Properties form and set both Snap X and
Snap Y to 40. All our boxes are 40✕40 pixels, so this will help us to place them neatly on
the level. The grid in the room will change accordingly.

5. Switch to the objects tab again and select the wall object to place. Create a level with a
number of boxes that form flat areas and staircases (remember, you can hold the Shift
key to add multiple instances). Also add one instance of the standing Lazarus object.
Try to make it look something like Figure 4-4.

■Note Sometimes when you close a room form you get a warning message saying that there are
instances outside the room. This can happen when you accidentally move the mouse outside the room
area while adding objects. You will be asked whether these instances should be removed—simply click
the Yes button.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED72

Figure 4-4. Your test level should look something like this.

At last, you can finally run the game! Test the character’s movement in all the possible sit-
uations and make sure that he behaves the way you would expect. If something isn’t working
right, then check your steps carefully, making sure that you enabled the Relative option in all
the actions where it was indicated. Alternatively, you can load the current version from the file
Games/Chapter04/lazarus1.gm6 on the CD.

Falling Boxes
Our next goal is to create the falling boxes that both threaten the player and provide the
means for their escape. As indicated in the game description, there will be four types of boxes
in the game: stone boxes, metal boxes, wooden boxes, and cardboard boxes. As you would
expect, stone boxes are the heaviest and cardboard boxes are the lightest. Falling boxes are
chosen at random and heavier boxes will crush lighter boxes as they fall—making it harder to
build a stairway out of the pit. However, to give the player a chance to think ahead, the next
box will be shown in the corner of the screen while the last box is still falling.

Each box will need to change its behavior three times in the game: first it appears in the
corner, as the “next box”; then it falls down the screen until it lands on another box; and finally
it forms a stationary obstacle for Lazarus to negotiate. As you may have guessed, we will
achieve this by creating three different objects for each box: one for each behavior. We will
start by creating the stationary boxes, as they are the simplest to make. First, though, we need
to create some new sprites.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 73

Creating new box sprite and object resources for the game:

1. Create sprites called spr_box_stone and spr_box_card using StoneBox.gif and
CardBox.gif. Disable the Transparent option on both these sprites.

2. Now create sprites called spr_box_metal and spr_box_wood using MetalBox.gif and
WoodBox.gif. This time leave the Transparent option enabled, as these two sprites
have a small amount of transparency around the edges.

3. Create a new object called obj_box_stone and give it the sprite for the stone box.
Set the Solid option so that it is detected in collision tests.

4. Repeat the previous step to add objects for obj_box_metal, obj_box_wood and
obj_box_card.

Next we’ll make the falling boxes. These need to start at the top of the screen, directly
above Lazarus’s horizontal position, so we’ll make use of the x variable of the standing Lazarus
object to tell us where that is. Once it starts falling, we’ll give it a speed of 5 because that divides
exactly into 40 (important for the same reasons as before) and it is slightly slower than the
speed that Lazarus falls (otherwise a box might squish Lazarus in the air!). When a box collides
with a heavier box, it turns into a stationary box, but when it collides with a lighter box, it
destroys that box and continues to fall.

Creating falling box objects for the game:

1. Create a new object called obj_falling_stone, give it the sprite for the stone box, and
select the Solid option as before.

2. Add a Create event and include a Jump to Position action in it. Type the variable
obj_laz_stand.x (the horizontal position of Lazarus) into X and set Y to -40. This will
make the box start above Lazarus, just out of view at the top of the screen.

3. Next include the Move Fixed action, using a downward direction and a Speed of 5.

4. Add a Collision event with obj_laz_stand and include a Change Instance action in it.
Change the Applies to option to Other, so that it changes Lazarus rather than the box.
Select the obj_laz_squished and select yes to Perform Events.

5. Add another Collision event, this time with obj_wall. This needs to stop the box
moving, so include a Move Fixed action and select the middle square with a Speed of 0.
Also include a Change Instance action, and select the stationary box obj_box_stone.

6. Add a third Collision event with obj_box_stone and include the same two actions as
the Collision event with the wall above (you could copy them).

7. Add a fourth Collision event with obj_box_metal. The metal box is lighter than the
stone box so it must be crushed. Include a Destroy Instance action and select the
Other object.

8. Add fifth and sixth Collision events with obj_box_wood and obj_box_card, both includ-
ing identical Destroy Instance actions as we did in step 7 to destroy the Other box in
the collision.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED74

Okay, that’s one of the falling boxes. The other falling boxes are similar but need to
behave slightly differently when they collide with different kinds of boxes.

9. Create the remaining three falling objects for the other types (obj_falling_metal,
obj_falling_wood, and obj_falling_card). Repeat steps 1–8 for each one, using step 7
when a box crushes another box and step 5 when a box stops moving. Refer to Table 4-1
when deciding which boxes should crush each other.

Table 4-1. Box Materials That Should Crush Each Other

Material Material(s) That It Crushes

Stone Metal, Wood, and Card

Metal Wood and Card

Wood Card

Card None

Phew! That was quite a lot of work (28 events and 46 actions), made worse by the fact that
we had to repeat the same steps over and over again. In Chapter 6 we will see that there is
actually a quicker way to do this kind of thing using parents. Nonetheless, although this might
have seemed like a lot of effort, it may help you to appreciate the work that goes into a com-
mercial game. They usually take at least 18 months to program and require hundreds of
thousands of lines of code to make them work!

Now let’s set about creating the final set of boxes that appears in the bottom-left corner
to show the player which box is coming next. This adds an important element of gameplay,
allowing the player to plan ahead and adapt their strategy based on where it would be most
useful for the next box to fall. It requires quick thinking and takes a bit of practice, but it helps
to create a challenging and rewarding game. The “next box” objects are very simple to make,
but we’ll need four of them again—one for each type of box.

Creating next box object resources for the game:

1. Create a new object called obj_next_stone, give it a stone box sprite, and enable the
Solid option. That's it, so click OK to close the object properties.

2. Create objects for obj_next_metal, obj_next_wood, and obj_next_card in the same way.

I’m sure you’ll be relieved to find out that’s all the boxes we need to create for this game!
However, while the falling boxes have actions to turn them into stationary boxes, there are no
actions yet for turning next boxes into falling boxes, or creating next boxes in the first place.
That’s because we are going to create a controller object to do this. A controller object is usu-
ally an invisible object (it doesn’t have a sprite), which performs important actions on other
objects. Our controller object will use a Step event to continually check if there is a falling box
on the level. If not, then it will turn the current next box into a falling box and create a new
next box. In this way, the controller object will maintain a constant cycle of new and falling
boxes until the level is completed—or the player gets squished!

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 75

Creating a controller object resource for the game:

1. Create a new object called obj_controller and leave it without a sprite.

2. Add a Step, Step event and include the Test Instance Count conditional action
(control tab). This counts the number of instances of a particular object on the level
and tests it against a value. Choose the obj_falling_stone object; leave Number as 0
and Operation as Equal to. This creates a condition that is true if the number of falling
stone box instances on the level is equal to 0 (i.e., there aren’t any!).

3. Include three more Test Instance Count conditional actions to check if there are no
instances of obj_falling_metal, obj_falling_wood, and obj_falling_card in the same
way. When combined, these conditional actions will make sure that there are no falling
boxes of any kind on the level before creating a new one.

4. Include a final Test Instance Count action for the obj_laz_stand object, but set
Number to 1 and the Operation to Equal to. This makes sure that there is an instance
of the standing Lazarus object on the level, rather than any of the animating objects.

5. Include a Start Block action. This will group together all the actions that need to be
performed to create the new box.

6. Include a Change Instance action and select Object for Applies to, so that it changes all
instances of one kind of object on the level into another. Set Object to obj_next_stone,
Change Into to obj_falling_stone, and select yes to perform events (the Create event
for the falling box needs to be performed to start it in the correct position). This will
turn any stone next boxes into stone falling boxes. The action should now look like
Figure 4-5.

Figure 4-5. Change the next box into a falling box.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED76

7. However, because the type of box will be chosen randomly, we don’t know what kind of
next box object the next box will actually be. To cover all bases, add three more Change
Instance actions to change obj_next_metal objects into obj_falling_metal objects,
obj_next_wood into obj_falling_wood, and obj_next_card into obj_falling_card in the
same way.

8. Next we need to randomly create one of the next box objects. Include a Create Random
action (main1 tab) and select the four different next box objects. Set X to 0 and Y to
440, and leave Relative disabled. Remember that when Relative is disabled, X and Y are
measured from the top-left corner of the screen. These coordinates will therefore put
the new next box where it should be in the bottom-left corner of the screen. The action
should now look like Figure 4-6.

9. Finally, include an End Block action to conclude the block of actions that are depend-
ent on all the conditions above them being true.

Figure 4-6. The Create Random action allows us to randomly create one of the four next
box objects.

This long list of conditional actions means that the block of actions will only be performed
if all these conditions are true. In other words, if there are no instances of obj_falling_stone
and no instances of obj_falling_metal and no instances of obj_falling_wood and no
instances of obj_falling_card and one instance of obj_laz_stand, then Game Maker will
create a new box.

You might have thought it a bit odd that we need to check that there is a standing Lazarus
object as part of our conditions for creating new boxes. If you look back at one of the Jump To
Position actions in the Create events of the falling boxes, you will remember that we use the
obj_laz_stand.x variable to start the object in the correct position. However, Game Maker
can’t provide that object’s x position if it has turned into an animation object, so it will create
an error in the program. So to avoid this possibility we check that there’s a standing Lazarus
instance on the level before creating new falling boxes.

Now it’s finally time to test our new objects.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 77

Editing the test room to add new instances:

1. Reopen the test room we created by double-clicking on it in the resource list.

2. Remove all the extra wall instances so that it leaves just a pit with walls on both sides
and across the bottom.

3. Add one instance of the controller object into the room (easily forgotten!)

■Note When an object has no sprite, it shows up in the Room Properties form as a blue ball with a red
question mark. This will not appear in the game, but reminds us that this (invisible) object is there when
we are editing the room.

Now run the game and test it carefully. Make sure that the box that appears in the bottom
left is actually the box that falls down the screen next and check that heavier boxes are crush-
ing lighter ones. As usual, if there are any problems, then carefully check the instructions or
load the game from Games/Chapter04/lazarus2.gm6 on the CD.

Finishing Touches
We now have all the basic ingredients of the game in place and there are just a few more things
to do before we could call it a finished game. There’s no way to complete a level yet, so we
need to include the stop buttons that will halt the boxes and move the player onto the next
level. Some sound effects would also be nice—as would a background and a title screen. We’re
obviously going to need a few different levels, too. However, before all that we’re going to add
something cool that will endear the player to Lazarus’s plight a little more.

No Way Out!
You may have noticed that there’s another animation we haven’t used yet that shows Lazarus
looking afraid. We’re going to show this animation when he’s in a hopeless situation and
knows he is about to meet his end. However, rather than create a new object for this
animation like we did with the others, we’re just going to change the sprite of the standing
Lazarus object when he becomes afraid. We can do this because “being afraid” does not need
any actions of its own: it has exactly the same behavior as standing—it just looks different.
We’re going to control this animation within the Step event, so that the correct animation is
chosen at any point in time. We will use Check Collision actions to detect if Lazarus is sur-
rounded by stacks of boxes two or more high on both sides. The Check Collision action
performs actions only when there is a collision at a particular point. In this way, we can
detect whether Lazarus is trapped on all sides and set his animation to be afraid.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED78

Editing the standing Lazarus object to detect for being trapped:

1. Reopen the standing Lazarus object and select its Step event, so that you can see the
existing actions for this event.

2. Include the Check Collision conditional action (control tab) below the last action in
the list. Set X to 40 and Y to 0, and enable the Relative option. This checks for a box to
the right of Lazarus.

3. Include another Check Collision action with X set to 40, Y set to -40, and the Relative
option enabled. This checks for a box diagonally to the right of Lazarus.

4. Include two more Check Collision actions: one with X set to -40 and Y set to 0, and the
other with X set to -40 and Y set to -40. Both should have the Relative option enabled.
These check for boxes to the left and diagonally to the left of Lazarus.

5. Finally, include a Change Sprite action, using the “afraid Lazarus” sprite. This will now
only happen if the four conditional actions above are true and Lazarus is literally
boxed in.

Hopeless as this situation may sound, it is actually possible for Lazarus to be saved from
this predicament by a heavy block crushing the stack of boxes on one side of him. If this hap-
pens, then we would like Lazarus to stop being afraid. We could include conditional actions to
check for this happening and change his sprite back to normal. However, we can achieve the
same effect simply by including a Change Sprite action at the very beginning of the list of
actions for this event. Changing into the standing Lazarus sprite by default will make the
sprite revert back to normal if he stops being trapped.

Editing the standing Lazarus object to detect for being freed:

1. Select the Step event for the standing Lazarus object so that you can see the existing
actions for this event.

2. Include a Change Sprite event at the very beginning of the list of actions (you can drag
actions about if it falls in the wrong place). Set it to change into the standing Lazarus
sprite.

You might want to play the game now and make sure that this new feature is working cor-
rectly. Features like this don’t change the gameplay directly, but add to the playing experience
and make the game more entertaining to play.

Adding a Goal
The player’s goal is to reach one of the stop buttons, so that it halts the machinery and stops
dropping the boxes. However, in practice all the buttons really need to do is move the player
onto the next level when the standing Lazarus object collides with them. If there are no more
rooms, then it will show a completion message and restart the game.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 79

Creating a new button object resource for the game:

1. Create a new sprite called spr_button using Button.gif.

2. Create a new object called obj_button and give it the button sprite. Set Depth to 10 so
that it appears behind other objects.

3. Add a Collision event with the standing Lazarus object and include a Sleep action in it
(main2 tab). Set Milliseconds to 1000 (1 second) and Redraw to true. This should give
a brief pause for the player to realize they have completed the level.

4. Include a conditional Check Next action (main1 tab).

5. Include a Next Room action (main1 tab).

6. Include an Else action followed by a Start Block action.

7. Include a Display Message action (main2 tab) and set Message to something like
“CONGRATULATIONS#You have completed the game!”

8. Include a Different Room action and set New Room to the first room (which is the
only room at the moment).

9. Finally, include an End Block action and close the object properties.

10. Edit your test room and add a stop button on either side at the top of the pit.

Starting a Level
At the moment, boxes start falling as soon as the player enters the level, leaving them with no
time to gather their thoughts and prepare their strategy. We’re going to help them out by creat-
ing a starter object that displays the title for a couple of seconds before changing itself into the
controller object and starting to drop boxes.

Creating a new starter object resource for the game:

1. Create a new sprite called spr_title using Title.gif.

2. Create a new object called obj_starter and give it the title sprite.

3. Add a Create event and include a Sleep action in it. Set Milliseconds to 2000, for a wait
of two seconds.

4. Include the Change Instance action and select the controller object. Close the object
properties.

5. Edit your test room, and remove the controller object using the right mouse button.
Add the starter object at an appropriate place instead.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED80

■Note You may have noticed that the title doesn’t appear on the first level when you run the game. This is
because the starter object’s Create event is executed before the window appears, so it has already turned
into a controller object by the time we see the room. This can be remedied using an Alarm action to add a
delay, but we won’t worry about this for now, and we’ll come back to alarms in Chapter 6.

Sounds, Backgrounds, and Help
It’s about time we made the game feel a bit more professional by including sound effects and
music in the game. This is quite simple and you can probably handle most of this on your own
by now, but here are some pointers to help you on your way:

1. All the sound resources can be found in the Resources/Chapter04 folder on the CD.

2. You’ll need to add sounds for Music.mp3, Wall.wav, Crush.wav, Squished.wav, Move.wav,
and Button.wav and play them at the right times using the Play Sound action
(main1 tab).

3. A good place to start playing the music would be in a new Game Start event for the
controller object. You’ll find the Game start event in Other events. Don’t forget to set
Loop to true in the Play Sound action to make the music loop forever.

4. You’ll need to add crush or wall sound effects to the existing Collision events between
falling box objects and stationary box objects.

5. Add a new Create event for the squished Lazarus object, and play the squished sound
effect there. This will save you the trouble of putting it in each of the four collision
events between falling boxes and Lazarus.

6. Adding Create events to play the move sound effects would also be a good way of
handling the four moving Lazarus objects.

7. Finally, you’ll need to play the button sound effect in the Collision event between the
button and Lazarus.

Test the game and make sure all the sound effects are playing in the correct place. If you
don’t hear a sound when moving around, check that you set Perform Events to yes in the
Change Instance actions that change into the animating objects. If you didn’t, then Game
Maker won’t perform the Create events that contain the sound effects.

A backdrop to the levels would also improve the look of the game, and we should put
together some kind of help text for the player too.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 81

Creating a background resource and Game Information:

1. Create a background using Background.bmp from Resources/Chapter04 on the CD.

2. Reopen the properties form for the room and select the backgrounds tab. Select the
new background from the menu halfway down on the left.

3. Double-click on Game Information in the resource list and add a help text for the
game. Remember to include the name of the game and who it was created by (you),
along with a short description of the aims and controls.

Levels
All that is left now is to create a variety of levels for your game. We talk about level design in
much more detail in Chapter 8, but it’s probably best to start with shallow pits and buttons on
each side to keep things fairly easy. However, as the levels progress they can become as deep
and narrow as you like! Making the floor of the pit higher will make the level harder, as the
player has less time to react to the falling boxes. You could also place stationary boxes in
unhelpful places or place the buttons in mid-air to vary the challenge. One sure way to make
the game more challenging is to increase the Speed setting on the settings tab for each level.
This controls the number of steps per second on each level. It defaults to 30 steps per second,
but higher numbers will make the game faster and harder and lower numbers will make it
slower and easier.

Now it’s up to you to create some interesting levels for the game. Remember that duplicat-
ing rooms will save you a lot of work, so right-click on the room in the resource list and select
Duplicate from the pop-up menu. Once you’ve made your levels, let someone else try to play
them and see how difficult they find it. Game designers often find their games very easy
because they have played them so much, but it is often much harder for everyone else. This
is something you should always try to bear in mind when designing your games.

One very last thing: you may find it helpful to add a cheat in your game that allows you to
skip between levels. You can do this as follows.

Editing the controller object to add cheats:

1. Open the properties form for the controller object.

2. Add a Key Press, <N> event and include the Next Room action.

3. Add a Key Press, <P> event and include the Previous Room action.

Good luck, and don’t forget to remove these cheats when the game is finally finished!

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED82

Congratulations
You’ll find the final version of the game in the file Games/Chapter04/lazarus3.gm6 on the CD.
You might want to extend the game a bit further by adding opening and closing screens, or
adding a scoring system to the game so that players can compete for the highest score. If
you’re feeling particularly adventurous, why not try adding some bonuses that sometimes
appear when boxes are crushed by each other? One of these could even transform all the
stationary boxes into stone boxes—or card boxes if you’re feeling mean!

By making this game, you have learned how to animate characters, both by creating dif-
ferent objects and by switching sprites. You have also seen how to use a controller object to
manage the game, plus you’ve learned how to use Else actions to provide extra control over
the outcome of conditional actions. In fact, you’ve learned a lot about Game Maker over these
past few chapters, and it’s about time we gave you a bit of a break. With this in mind, the next
chapter is all about game design and you won’t have to go near events and actions again until
Chapter 6. In the meantime, we’ll be thinking more carefully about the designs behind the
games we’ve made so far, and we’ll be exploring what makes them fun to play.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 83

